Topical capsaicin-induced allodynia in unanesthetized primates: pharmacological modulation.

نویسندگان

  • Eduardo R Butelman
  • Jonathan W Ball
  • Todd J Harris
  • Mary Jeanne Kreek
چکیده

Topically administered capsaicin produces thermal allodynia, and this effect has been used to investigate pain transduction and its pharmacological modulation. This study investigated the parameters of topical capsaicin-induced thermal allodynia in unanesthetized rhesus monkeys and its pharmacological modulation by centrally acting compounds [a kappa-opioid agonist: (5alpha,7alpha,8beta)-(+)-N-methyl-N-(7-[1-pyrrolidinyl]-1-oxaspiro [4.5]dec-8-yl)-benzeneacetamide (U69,593); and noncompetitive N-methyl-d-aspartate (NMDA) antagonists: ketamine and MK-801 (dizocilpine)]. Rhesus monkeys (n = 4) were studied within the warm water tail withdrawal assay (20-s maximum latency), using thermal stimuli that are normally not noxious (38 and 42 degrees C). Capsaicin was applied topically on the tail (0.0013 and 0.004 M capsaicin solution on a 1-cm2 patch; 15-min contact). Topical capsaicin produced concentration-dependent thermal allodynia in both temperatures, robustly detected 15 to 90 min after topical capsaicin removal. A similar allodynic profile was observed with topical administration of the "endovanilloid" N-arachidonoyl-dopamine. The kappa-agonist U69,593 (0.01-0.1 mg/kg, s.c.) dose dependently prevented capsaicin (0.004 M)-induced allodynia in 38 and 42 degrees C, and the largest U69,593 dose also reversed ongoing allodynia within this model. Two NMDA antagonists, ketamine and MK-801 (0.32-1.8 and 0.032-0.056 mg/kg, respectively), also prevented capsaicin-induced allodynia in 38 degrees C, but only variably in 42 degrees C, at doses that did not cause robust thermal antinociceptive effects. At the largest doses studied, ketamine but not MK-801 also briefly reversed ongoing capsaicin-induced allodynia. The present model of topical capsaicin administration may be used to study antiallodynic effects of opioid and nonopioid compounds, as well as their ability to prevent and reverse allodynia, in unanesthetized nonhuman primates in the absence of tissue disruption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiallodynic effects of loperamide and fentanyl against topical capsaicin-induced allodynia in unanesthetized primates.

Capsaicin produces thermal allodynia in animals and humans by acting as an agonist at vanilloid receptor subtype 1 [VR1; also known as transient receptor potential vanilloid type 1 (TRPV1)]. VR1 receptors are widely distributed in the periphery (e.g., on primary afferent neurons). These studies examined the ability of loperamide (0.1-1 mg/kg s.c.; a micro-opioid agonist that is peripherally sel...

متن کامل

Areas of capsaicin-induced secondary hyperalgesia and allodynia are reduced by a single chiropractic adjustment: a preliminary study.

INTRODUCTION The aim of the study was to investigate the hypoalgesic effects of a single spinal manipulation treatment on acute inflammatory reactions and pain induced by cutaneous application of capsaicin. METHODS Twenty healthy subjects participated in the experiment, which consisted of 2 sessions. In both sessions, following control measurements, topical capsaicin was applied to the right ...

متن کامل

Activation of peripheral kappa opioid receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys.

8-Methyl-N-vanillyl-6-nonenamide (capsaicin) was locally applied in the tail of rhesus monkeys to evoke a nociceptive response, thermal allodynia, which was manifested as reduced tail-withdrawal latencies in normally innocuous 46 degrees C water. Coadministration of three kappa opioid ligands, U50,488 (3.2-100 microgram), bremazocine (0.1-3.2 microgram), and dynorphin A(1-13) (3.2-100 microgram...

متن کامل

Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

BACKGROUND Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mi...

متن کامل

Differential involvement of reactive oxygen species in a mouse model of capsaicin-induced secondary mechanical hyperalgesia and allodynia

Abstract Intradermally injected capsaicin induces secondary mechanical hyperalgesia and allodynia outside the primary (i.e., capsaicininjected) site. This secondary mechanical hypersensitivity is attributed to central sensitization in which reactive oxygen species (ROS) play a key role. We examined whether ROS would be differentially involved in secondary mechanical hyperalgesia and allodynia u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 306 3  شماره 

صفحات  -

تاریخ انتشار 2003